
CO456
Web

- most materials adapted from Moseley (2007), Chapter 5 –
supplemented with extracts from Bates (2006) and w3schools.com

Week 6
JavaScript branches, loops & functions

02/11/2018 Richard Mather 1

Module schedule

02/11/2018 Richard Mather 2

Wk. Lecture/subject area(s) Practical Reading (Moseley, 2007)
1 Introduction

How the Web works

Internet/Web definitions and HTML report Ch 1 (The way the Web works)

2 HTML 1 (Introductory - inc. lists and
hyperlinks)

HTML Ch 2 pp 24-36 (HTML)

3 HTML 2 (inc. tables, images and forms) HTML Ch 2 pp 36-48 (HTML)

Ch 3 (XHTML and frames)
4 CSS 1 (Introduction and core CSS

principles)
CSS – introductory styles, embedded styles. Ch 4 pp 76-96.

5 CSS 2 (Positioning elements). CSS– using IDs, classes and layout control. Ch 4 pp 97-103.
6 CSS 3 (Advanced layout & navigation) CSS – using CSS to produce button-like navigation from HTML list

elements. (CW2a to be demonstrated).
Specialised articles.

7 JavaScript 1 (Fundamentals, variables) JS – foundation constructs. Ch 5 pp 108-116

8 Guided Learning Week Consolidate Internet & W3 knowledge and HTML & CSS skills. Review Ch 1 to Ch 4.
9 JavaScript 2 (Functions, branches, loops). JS – calling functions. Ch 5 pp 117-124.
10 JavaScript 3 (Objects and the DOM). JS – manipulating the DOM. Ch 6 126-139.
11 JavaScript 4 (Forms and validation). And

DHTML
JS– validating user completed forms. Ch 6 139-145, Ch 7.

12 HTML5, CSS3, - media, forms, gradients,
SVG (‘Edge’) and other enhancements

Web frameworks taster session 1 See practical sheets for information
sources

Vacation

13 Advanced HTML5, CSS3 & JS frameworks
(e.g. jQuery, jQuery Mobile, Box2DWeb)

Web frameworks taster session 2 See practical sheets for information
sources

14 Assignment workshop 1 Assignment workshop 1 N/A
15 Assignment workshop 2 Assignment workshop 2 N/A

JavaScript - Branches
• Three fundamental programming structures – sequence,

selection (branches) and iteration loops

• In JavaScript there are the following branching -
selection statements:
– if statement - use to execute some code only when one specified

condition is true

– if...else statement - use to execute code if the condition is true and to
execute another code if the condition is false

– if...else if....else “ladder” statement - use to execute different blocks of
code if there are more than two conditions

– switch statement – an alternative and more ‘condensed’ means of
achieving “if...else if....else”

– the “conditional operator” … var=(condition) ?value1:value2 (NOTE: this
links to a short script on W3Schools that also demonstrates much about
the DOM – definitely worth a closer look!!!)

02/11/2018 Richard Mather 3

JavaScript - Branches
Example of an “if - else if - else” ladder with the Date class

<script type="text/javascript">
var d = new Date()
var time = d.getHours()
if (time<12)
{

document.write("Good morning")
}
else if (time>=12 && time<18)
{

document.write("Good afternoon")
}
else
{

document.write("Good evening")
}

</script>

02/11/2018 Richard Mather 4

JavaScript - Branches
Example of a “switch” statement with the Date class
<script type="text/javascript"> //Greeting depends on what day it is - Note: Sunday=0,

var d=new Date(); theDay=d.getDay();
switch (theDay)
{

case 1: document.write("<h1><p style=\"color:blue; background:yellow; font-weight=bold\">Oh! ...
Monday</p></h1>")

break
case 2: document.write("<h1><p style=\"color:blue; background:yellow; font-weight=bold\">Tuesday ... on a
roll</p></h1>")

break
case 3: document.write("<h1><p style=\"color:blue; background:yellow; font-weight=bold\">Wednesday ...
midweek already</p></h1>")

break
case 4: document.write("<h1><p style=\"color:blue; background:yellow; font-weight=bold\"> Thursday ... Nearly
the w/e</p></h1>")

break
default:

document.write("<h1><p style=\"color:blue; background:yellow; font-weight=bold\">relax - the weekend!
</p></h1>")

}
</script>

02/11/2018 Richard Mather 5

JavaScript - Branches
Example of the “conditional operator” with the Date class

Note: don’t forget to escape quotations in string variables!

<script type="text/javascript"> //Rule ... var=(condition) ?value1:value2

var d=new Date();

theMonth=d.getMonth(); //Months are numbered 0 to 11

season=(theMonth>=9 || theMonth<=2) ?

"<p style=\"color:white; background:blue; font-weight=bold\">winter</p>"

:

"<p style=\"color:red; background:orange; font-weight=bold\">summer</p>"

document.write("It must be " + season);

</script>

02/11/2018 Richard Mather 6

JavaScript – Iteration (loops)
• Allow iteration/repetition of sections of code

• Three types of loops – “for”, “while” and “do while”

• For loop:
– rule: for(start value; limiting condition; increment)

– counter (e.g. “i”) may also be used to process contents of an array

– e.g. for(i=0; i<=3; i++) { document.write(myArray[i]); }

• While loop:
– must declare and initialise counter first (e.g. “count”)

– e.g. count = 0; while (i<=3) { document.write(myArray[i]) ; i++; }

• Do while loop
– again, must declare and initialise counter first (e.g. “count”)

– tests condition after loop so will always execute at least once

– e.g. count = 0; { document.write(myArray[i]) ; i++; } while (i<=3)

02/11/2018 Richard Mather 7

JavaScript – Functions
• Separate from the main program
• Principle of “write once use many”
• Advantages to breaking a program up into discrete subroutines include:

– reducing the duplication of code in a program
– enabling reuse of code across multiple programs,
– decomposing complex problems into simpler pieces (improves maintainability and ease of

upgrade)
– improving readability of a program
– hiding or regulating part of the program (see “Information hiding”)

• The components of a subroutine include:
– always - a body of code to be executed when the subroutine [function] is called
– sometimes - parameters that are passed to the subroutine from the point where it is

called
– sometimes - a value that is returned to the point where the call occurs [
– remember: returned values may be capture by a variable. For example, to capture a value

returned by JavaScript confirm/prompt box … var c=confirm("Select one ...")

02/11/2018 Richard Mather 8

JavaScript – Functions
• Functions contain code that is executed either by an event or by a call to the function.
• Functions are often defined in the <head> section.

<html>
<head>

<script type="text/javascript">
function displaymessage() //This is only executed by the “onclick” event of the form below
{ alert("Hello World#2! – \n\n\tthis alert box\n\tis placed \n\tinside a \n\tfunction!") }

</script>
</head>

<body>
<form><input type="button" value="Click me!" onclick="displaymessage()" ></form>

<script type="text/javascript">
alert("Hello World #1! – \n\n\tthis alert box\n\tisn’t in a \n\tfunction!") //Not a function - executed on page load

</script>
</body>
</html>

• [1] alert("Hello World #1!") is executed as soon as the page is loaded.
• [2] alert("Hello World #1!") is only executed by the onClick event which calls the function displaymessage()

when the button is clicked by a user.

02/11/2018 Richard Mather 9

JavaScript – Functions
Here is an example of a function that takes parameters and returns a value

<html>
<head>
<script type="text/javascript">

function product(a,b)
{
return a*b

}
</script>

</head>

<body>
<script type="text/javascript">

var value1=prompt("Please enter first number here","first number")
var value2=prompt("Please enter second number here","second number")
document.write("The product of the two numbers you gave is " + product(value1,value2))

</script>
</html>

02/11/2018 Richard Mather 10

1

2

3

4

JavaScript summary
• JavaScript provides “normal” programming facilities for implementing

sequence, selection and iteration using “familiar” C-language syntax
• JavaScript provides many internal functions (including readymade pop up

ones - alert, prompt, confirm) and allows developers to write their own
• Functions allow repeatable, reusable code to be separated so that it may

be executed by events/calls
• Placing functions in the <head> element ensures that they are read and

loaded by browser before being called by some event
• The basic “C-like” syntax for defining a function is …

– function functionName(parameter1, ...,parameterX) { some code; return someVariable
(optional); }

• NEXT WEEK – JavaScript objects and the Document Object Model

02/11/2018 Richard Mather 11

Practical 6

• Work towards assignment 2a
• Rewrite last week’s JS solution using loops, functions and the

Array.length property
• Produce a simple popup driven calculator with interface

similar to the one below

02/11/2018 Richard Mather 12

